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Brownian motion in a single relaxation time Maxwell fluid
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A simple model of Brownian motion in a single relaxation time Maxwell fluid is described and compared to
diffusing wave spectroscopy measurements of colloidal motion in representative viscoelastic fluids, namely,
CTAB/KBr wormlike micelle solutions. The experimentally measured Brownian motion conforms to the
model predictions at long times~low frequencies! and is an additional confirmation of the essentially Max-
wellian stress relaxation behavior of wormlike micelle solutions at low frequencies. Surprisingly, the Maxwell
model predicts a plateau onset time which, while capable of reducing the measured mean-square displacements
to a master curve, also grossly underestimates the actual plateau onset time. The predicted rescaling is shown
to be essentially that also predicted by the Doi-Edwards tube model for polymer solutions under good solvent
~excluded volume! conditions where a more proper accounting of the short-time dynamics is made. This
indicates that the success of the predicted Maxwell model plateau onset time rescaling is purely fortuitous.

PACS number~s!: 83.70.Hq, 05.40.Jc, 82.70.Dd
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I. INTRODUCTION

Recently there has been strong interest in determining
local and bulk viscoelasticity of soft materials by monitorin
the thermal fluctuations of dispersed spherical probe parti
with various optical techniques@1–5#. The so-called local
viscoelasticity should be representative of small-scale st
ture and dynamics as sampled by small spherical pro
while a technique that allows for the determination of bu
rheological properties from small samples would prove to
invaluable to the biomedical community where sample qu
tities can be exceedingly minute. In addition, these opt
techniques can access much higher frequencies than con
tional mechanical rheometry@1–5#, are noninvasive in tha
they probe quiescent or unperturbed dynamics in theory,
provide a potential means for testing theoretical models o
large frequency ranges.

Brownian motion in simple viscous liquids is well unde
stood and the connection between this thermal motion
hydrodynamic response is readily apparent@7#. In a similar
manner, bulk mechanical properties should be recoverab
the thermal motion of spherical probes dispersed withi
viscoelastic medium can be measured. Since viscoelastic
ids store energy, a certain ‘‘memory’’ of the particle’s pa
motion must exist. For this reason, a memory function
oftentimes utilized to account for the frictional resistance
perienced by a diffusing particle in a Langevin description
Brownian motion in such systems. This frictional resistan
is nonlocal in time and the frictional force experienced by
diffusing particle at timet is influenced by its velocity a
some earlier timet8 @7–9#. One of the first descriptions o
the connection between correlation functions and mem
kernels was that of Zwanzig@10#. Berne and co-workers de
rived similar results and applied them to molecular veloc
autocorrelation functions where they proposed a tw
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parameter exponentially decaying function as a memory k
nel ansatz@11#. Later, Zwanzig and Bixon established th
connection between a frequency-dependent friction coe
cient in the Stokes-Einstein formalism and the memory fu
tion in a Langevin description of Brownian motion via th
hydrodynamic theory@12#. A Langevin description of
Brownian motion in more complicated media would entai
proper model and development of an appropriate mem
kernel pertinent to the suspending medium which, for e
ample, has recently been done for the case of concentr
colloidal dispersions where interparticle interactions a
present@13#.

Several groups have investigated the connection betw
a colloidal particle’s Brownian motion and the bulk rheolog
cal properties of the medium in which the particle is su
pended. There have been two different, yet related
proaches@1–6#. In the first approach elasticity is built into
framework that is exact for a purely viscous fluid@1–4#. The
foundation of this approach is the assumption that the no-
Stokes-Einstein relationship can be generalized to all
quencies. Here a mean-field assumption is made whe
macroscopic stress relaxations are directly connected to
croscopic stress relaxations or, more simply put, there is
delineation between local and bulk viscoelasticity. This
sumption establishes a direct relationship between the
pending medium’s shear modulus and the mean-square
placement of a Brownian particle. The second appro
makes a more direct accounting of the elastic componen
the suspending medium. The equation of elastic equilibri
is solved exactly for a rigid spherical surface exhibiting t
no-slip boundary conditions to yield an effective complian
for sphere displacement@5,6#. At sufficiently high frequen-
cies this effective compliance is directly proportional to t
inverse of the shear modulus when it is assumed that
suspending medium is incompressible owing to viscous c
pling between the solvent and the matrix material@6#. How-
ever, at lower frequencies this coupling does not exist a
the suspending medium’s osmotic compressibility m
also influence the Brownian motion of any suspend

ail
5389 ©2000 The American Physical Society
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5390 PRE 62JOHN H. van ZANTEN AND KARL P. RUFENER
probes. Therefore, both the suspending medium’s longit
nal and transverse moduli may influence a probe’s Brown
motion below some critical frequency. It should be not
that there has been an extensive amount of previous w
concerning long-time probe diffusion in polymer solution
especially by Phillies and co-workers@14#. This work has
focused on the validity of the Stokes-Einstein relations
for long-time probe diffusion in polymer solutions and th
connection between long-time probe diffusion and polym
solution dynamics.

II. BROWNIAN MOTION IN A SINGLE
RELAXATION-TIME MAXWELL FLUID

The standard Langevin description of a neutrally buoy
particle of massm undergoing Brownian motion can be ea
ily modified to include memory, or viscoelastic, effec
@7–12#

m
dv~ t !

dt
52E

0

t

z~ t2t8!v~ t8!dt81fR~ t !. ~1!

Herev(t) is the particle velocity andfR(t) denotes the ran
dom Brownian or thermal forces acting on the particle.z(t)
is a time-dependent memory function for an isotropic,
compressible viscoelastic fluid allowing for both energy lo
and storage and is related to the instantaneous friction c
ficient. The integral term accounts for the viscous damp
of the fluid and reflects the viscoelastic nature of the s
pending complex fluid. As noted before, owing to its v
coelastic nature the suspending medium can store en
upon deformation, thus motivating the use of the mem
function form of the Langevin equation. This ability to sto
energy profoundly changes the temporal correlations of
stochastic forces acting upon the particle at thermal equ
rium since the suspending medium must satisfy
fluctuation-dissipation theorem,^fR(0)"fR(t)&5kTz(t) @15#.
Therefore, in principle, the measurement and analysis of
ticle motions should allow the determination of the memo
function z(t).

The single relaxation-time Maxwell fluid is the simple
model of a viscoelastic material. As such, it is an appropr
place to start when considering Brownian motion in v
coelastic media. The memory function for the sing
relaxation-time Maxwell fluid can be found by solving th
creeping flow sphere problem under the condition that
symmetric, traceless part of the stress tensor obeys M
well’s constitutive equation@16,17#. The resulting memory
function can be incorporated into the viscoelastic Lange
equation for Brownian motion to yield

m
dv~ t !

dt
52

z

t E0

t

e2~ t2t8!/tv~ t8!dt81fR~ t !, ~2!

wherez is the particle friction coefficient andt is the termi-
nal relaxation time. The particle friction coefficient is give
by z56phR where h is the suspending medium’s zer
shear viscosity andR is the particle radius. This equation ca
be recast in the form of a differential equation describing
temporal evolution of the particle’s velocity autocorrelati
function @18#
i-
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ttB

d2

dt2
^v~ t !"v~0!&1tB

d

dt
^v~ t !"v~0!&1^v~ t !"v~0!&50,

~3!

wheretB denotes the Brownian timem/z. The nature of the
particle’s velocity autocorrelation function is strongly depe
dent on the values oftB and t. For typically encountered
viscoelastic materialst/tB@1/4 and, therefore the particl
velocity autocorrelation, as well as the particle mean-squ
displacement, will exhibit oscillations. The velocity autoco
relation function~whent/tB.1/4! is

^v~ t !"v~0!&5
3kT

m
e2t/2tS cos

A4~t/tB!21

2t
t

1
1

A4~t/tB!21
sin

A4~t/tB!21

2t
t D . ~4!

This is essentially the same result calculated for the ansa
Berne and co-workers@8,11#. The particle’s mean-squar
displacement can be calculated from the velocity autoco
lation function in the usual manner@7–9#. The mean-square
displacement of a Brownian particle undergoing thermal m
tion in a single relaxation-time Maxwell fluid is

^Dr 2~ t !&5
6kT

m S tBt1tB~tB2t!

3Fe2t/2t cos
A4~t/tB!21

2t
t21G

1
tB

2

4
e2t/2t sin

A4~t/tB!21

2t
t

3F 1

A4~t/tB!21
23A4~t/tB!21G D . ~5!

The expected particle motion is recovered in the short-ti
and long-time limits, ballistic @ limt→0^Dr 2(t)&
5(3kT/m)t2# and diffusive behavior @ limt→`^Dr 2(t)&
;(6kT/z)t#, respectively. At times shorter than the termin
relaxation time (t<t) the mean-square displacement is ve
similar to that found for an underdamped, harmonica
bound Brownian particle@19# in that it exhibits oscillations,
while at much longer times (t@t) the mean-square displace
ment is that of a free Brownian particle@7–10,19#. This ob-
servation owes to the fact that the suspending medium’s
coelastic response is dominated by its elastic compon
~i.e., the storage modulus! at high frequencies, while its vis
cous component~i.e., the loss modulus! dominates at low
frequencies. The plateau region oscillations are boun
above by the suspending medium’s elastic response and
low by its viscous component. That is, the particle oscilla
in an elastic cage while undergoing very slow viscous dis
pation. The plateau region upper bound is actually twice
value expected for an overdamped, harmonically bou
Brownian particle@19#, but this overshoot is simply a resu
of insufficient viscous dampening at short times and even
ally decays to the result expected from equipartition wh
viscous dampening becomes appreciable~i.e., at t>t!. This
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PRE 62 5391BROWNIAN MOTION IN A SINGLE RELAXATION TIM E . . .
lack of viscous dampening at early times also significan
extends the duration of the ballistic regime in comparison
that expected for purely viscous fluids. The ballistic moti
persists untilt>(ttB)1/2 for the single relaxation-time Max
well fluid in contrast to the case of purely viscous flui
where ballistic motion is essentially extinguished whent
>tB . This extended ballistic motion regime is simply a r
sult of the single relaxation-time Maxwell fluid model use
in this calculation. A more realistic model incorporating mu
tiple relaxation times would allow for viscous dissipatio
over a wide frequency range and subsequently an earlie
tenuation of the ballistic motion regime.

The plateau region reflects the existence of the ela
response and as such can be used to estimate the pl
modulusG0 or terminal relaxation timet from experimental
data. While the time of the plateau onset can be shown
scale ast;(ttB)1/2, and the onset of diffusive motion scale
as t;t, the magnitude of the plateau can also be used
estimate the relaxation time. This is especially true for s
tems in which the mean-square displacement does not c
pletely saturate, but actually exhibits a slow monotonic
crease in an apparent plateau region or for cases wherei
terminal relaxation time is very long. For the sing
relaxation-time Maxwell fluid the mean-square displacem
saturates at

^Dr 2~ t !&plateau max5
12ttBkT

m
5

12tkT

z
5

2tkT

phR
5

2kT

pRG0
,

~6!

where G05h/t. Other than the numerical factor, the la
relation in Eq.~6! can also be derived from scaling arg
ments@2#. It is apparent that the zero shear viscosity is
quired to calculate the relaxation timet from the mean-
square displacement plateau. While the single relaxat
time Maxwell fluid is a very simple viscoelastic system,
does provide some insight into more complicated syste
As most real systems typically exhibit a spectrum of rela
ation times occurring over a large temporal range, this p
teau region will not be truly flat or exhibit distinct oscilla
tions in reality. However, the dominant relaxation time c
still be estimated from the mean-square displacement pla
value if the zero shear viscosity is known. Of course, the b
estimate of this so-called terminal time is the time at wh
the longtime diffusion behavior commences. It should
noted that for the case of extremely long terminal times t
plateau method could be the only experimentally realis
approach. Also, from the previous discussion it is obvio
that there would have to be a significant separation of re
ation times in order to observe two distinct plateaus in
mean-square displacement.

At very late times (t@t) inertial effects completely di-
minish ~i.e., the oscillations are completely damped! and the
mean-square displacement becomes

^Dr 2~ t !&5
6kT

z
~ t1t2tB![

6kT

z
~ t1t!. ~7!

This is simply the result expected for free diffusion. T
latter relationship can also be derived via the approach
Mason and Weitz@1–3# if the single relaxation-time Max-
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well fluid kernel is used in their calculational scheme, whi
is not surprising as their method neglects inertial effects~see
Appendix A!. Interestingly this expression qualitatively ca
tures the behavior of the mean-square displacement bey
the ballistic regime and should prove capable of estimat
the terminal relaxation time from mean-square displacem
measurements of probe motion for (ttB)1/2<t<t.

III. WORMLIKE MICELLES AS A REPRESENTATIVE
MAXWELL FLUID

Several complex fluid systems are known to exhibit n
Maxwellian behavior, at least in the frequency range ty
cally probed by mechanical rheometry@20#. For instance,
several aqueous surfactant solutions are known to con
very long, flexible self-assembled wormlike micelles. The
wormlike micelles are similar to polymers in that they a
quite flexible~typical persistence lengths of;20 nm versus
diameters of;5 nm! and they exhibit contour lengths on th
order of microns@21#. These so-called living polymers ar
different from classical polymers in that they are constan
breaking and recombining and, therefore, do not exhib
quenched distribution of lengths. This ability to break a
recombine profoundly affects the dynamical behavior
these systems@22#. Stress relaxation in entangled classic
polymer solutions is well described via a reptation mec
nism in which the polymer chains diffuse along their conto
path or tube until they escape, at which point the impos
stress is completely relaxed@23#. While living polymers or
wormlike micelles can also relax stress via curvilinear diff
sion or reptation, their ability to break and recombine p
vides another route for stress relaxation. The so-called
tation time is the time a polymer chain requires to diffu
along its contour length thereby escaping from the stres
initial tube. When the wormlike micelle breaking
recombination time is much longer than the wormlike m
celle reptation time, stress relaxation is dominated by
reptation process and the stress relaxation behavior of liv
polymers should be essentially the same as for classical p
mers. However, when the wormlike micelle breakin
recombination time is much shorter than the reptation tim
the breaking/recombination kinetics dominate the stress
laxation process leading to monoexponential or Maxwell
stress relaxation behavior@22#.

Aqueous solutions of cetyltrimethylammonium bromid
~CTAB! and potassium bromide~KBr! are known to form
wormlike micelles at various temperatures@24–28#. This
well-known wormlike micelle system has been thorough
characterized via mechanical rheometry and dynamic li
scattering @22,24–28#. The thermal motion of 0.966mm
diam polystyrene latex spheres in a 0.1 g/cm3 ~0.27 M!
CTAB-2.5 M KBr solution at various temperatures is show
in Fig. 1. The mean-square displacement was measure
diffusing wave spectroscopy and as such is an average
thousands of particles@1–3#. The time evolution of the trace
mean-square displacement contains a wealth of informa
as to the state of the suspending medium. At first glanc
may appear that the system is behaving as a purely visc
solution at 30.2 °C, however the mean-square displacem
is actually subdiffusive,̂Dr 2(t)&}t0.8. This may be an indi-
cation that this system behaves as a solution of semiflex
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5392 PRE 62JOHN H. van ZANTEN AND KARL P. RUFENER
polymers at these frequencies as^Dr 2(t)&}t3/4 for the pre-
dicted semiflexible polymer solution shear modulus@29,30#
~see Appendix B!. The lack of a plateau for this particula
composition may owe to the fact that the experimental c
figuration utilized here can only measure mean-square
placements below a threshold value somewhat less
10211cm2. A plateau, albeit somewhat brief, is finally ob
served at 36.0 °C. However, there is no distinct power-l
scaling at either short or long times in this case. The lack
long-time diffusion is simply a result of the limited exper
mentally accessible mean-square displacement range
given enough time, colloidal thermal motion in any vi
coelastic system should eventually exhibit diffusive scali
Distinctly Maxwellian behavior, a nearly flat plateau that
followed by purely diffusive motion at long times, is readi
apparent at both 40.5 and 46.2 °C.

A representative mean-square displacement time trace
a Maxwellian 0.1 g/cm3 ~0.27 M! CTAB-2.0 M KBr solution
at 36.0 °C is shown in Fig. 2. It is apparent that the inertial
Maxwell model for Brownian motion, Eq.~7!, provides an
excellent description of the experimentally observed ther
motion at long times,t>1023 s. The fitted curve corre
sponds to a single relaxation time Maxwell fluid with a ze
shear viscosity of 8800 p and a terminal relaxation timet of
1.05 s, both of which are of the same magnitude as mech
cal rheology measurements of similar systems~see Table I!
@24–28#. Deviations from the predicted Maxwellian behavi
are apparent at short times and are most likely a resul
Rouse and breathing modes@23#, as the influence of inertia
effects can be entirely discounted for the systems under
sideration here~see Appendix B!. That is, the downturn from
the plateau takes place at times much removed from the
listic path prediction. All of the strongly Maxwellian system
display the same behavior as that shown in Fig. 2. In
cases of Maxwellian behavior there is no distinct, multid
cade power-law scaling for the mean-square displaceme
the shortest times accessible to the experimental meas
ments.

The mean-square displacement of 0.966m polystyrene
spheres in a whole host of Maxwellian CTAB-KBr solution
is shown in Fig. 3. A wide range of terminal relaxation tim

FIG. 1. Diffusion of 0.966mm diam polystyrene latex spheres
a CTAB-KBr solution with@CTAB#50.1 g/cc and@KBr#52.5 M.
The CTAB-KBr system has been shown to form wormlike micel
and exhibit single exponential stress relaxation behavior at low
quencies under certain conditions.
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(0.03 s<t<1.10 s) and zero shear viscosities (102 p<h
<104 p) are represented. The applicability of the Maxw
model to late time diffusion in these systems is readily a
parent from the late time rescaling representati
m^Dr 2(t)&/6kTttB vs t/t, shown in Fig. 4. The measure
mean-square displacement data are collapsed onto a m
curve for t/t>1022, which demonstrates that the CTAB
KBr solutions considered here exhibit essentially Maxwe
ian dynamics at long times or low frequencies. The visco

-

FIG. 2. Viscoelastic CTAB-KBr systems exhibit singl
relaxation-time Maxwell fluid behavior at long times. The mea
square displacement 0.966mm polystyrene latex spheres dispers
in a solution with @CTAB#50.1 g/cc, @KBr#52.0 M and T
536.0 °C is shown. The fitted curve corresponds to the predic
late time probe mean-square displacement in a single relaxa
time Maxwell fluid with a zero shear viscosity of 8800 P and
terminal relaxation timet of 1.05 s both of which correspond ver
well with mechanical measurements on a similar system.

TABLE I. Rheological properties of CTAB/KBr solutions.

CTAB ~M! KBr ~M! T ~°C! h ~P! t ~s! G0 ~dyn/cm2!

Mean-square displacement measurements: This paper
0.27 0.50 30.2 3500 0.83 4200
0.27 0.50 36.0 710 0.16 4400
0.27 0.50 40.5 130 0.03 3800
0.27 2.0 36.0 8800 1.05 8400
0.27 2.0 40.5 2000 0.30 6600
0.27 2.0 46.2 750 0.12 6300
0.27 2.5 40.5 1500 0.12 1300
0.27 2.5 46.2 670 0.06 1200

Mechanical rheometry measurementsa

0.25 1.50 35.0 850 0.45 1880
0.30 1.50 35.0 1560 0.60 2600
0.35 0.40 31.0 520 0.14 3700
0.35 1.00 31.0 2000 0.69 2900
0.35 1.50 31.0 4100 1.37 3000
0.35 2.00 31.0 4000 1.36 2950
0.35 0.40 35.0 300 0.05 5600
0.35 1.00 35.0 1400 0.33 4300
0.35 1.50 35.0 2200 0.69 3200
0.35 2.00 35.0 2000 0.56 3600

aReference@26#.
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ties, terminal relaxation times, and plateau moduli estima
from mean-square displacement measurements are o
same order of magnitude as mechanical rheometry meas
ments made by other investigators~see Table I! @24–28#.

In principle, the short-time rescalingm^Dr 2(t)&/6kTttB
vs t/(ttB)1/2, should not be applicable since Rouse a
breathing modes should dominate at short times or high
quencies@23#. However, at first glance, the short-time resc
ing appears to describe the data very well~see Fig. 5! as they
collapse quite neatly. However, the plateau onset occurs
t/(ttB)1/2 value of'1022103, not unity, indicating that this
result may be somewhat fortuitous with respect to the M
wellian dynamics. Also, the plateau onset time in the Ma
well model is the time at which the particle’s ballistic motio
ceases@i.e., ^Dr 2(t)&}t2#. This is not the case for the exper
mental data where the mean-square displacement is o
ously subdiffusive before the plateau onset time and not
listic. If the plateau onset timete , predicted by the Doi-
Edwards tube model, is considered, a model that a
predicts subdiffusive particle motion within the Maso

FIG. 3. Probe diffusion in several viscoelastic CTAB-KBr sol
tions: @CTAB#50.1 g/cc,@KBr#50.5 M, andT530.2 ~d!, 36.0
~j!, and 40.5 °C~m!; @CTAB#50.1 g/cc,@KBr#52.0 M, andT
536.0 ~s!, 40.5 ~h!, and 46.2 °C~n!; @CTAB#50.1 g/cc,@KBr#
52.5 M, andT540.5~3! and 46.2 °C~1!. The probe particles are
0.966mm diam polystyrene latex spheres.

FIG. 4. Probe diffusion rescaled with respect to the termi
relaxation-time and plateau mean-square displacement confirm
the near Maxwellian behavior of these CTAB-KBr wormlike m
celle solutions at long times. Symbols are the same as in Fig.
d
the
re-

d
e-
-

t a

-
-

vi-
l-

o

Weitz approximation at early times~see Appendix B!, the
following estimate can be made for the plateau onset t
te :

te>
zsfa2

G0b3 ;
f

G0
,

wheref is the polymer volume fraction~concentration!, zs is
the polymer segment friction coefficient within the Rou
model,b is the effective bond length, anda is the primitive
chain step size, which is closely related to the tube diame
Since wormlike micelle solutions should behave as class
polymer solutions for times much less than the average
celle breaking time, it is expected that the Doi-Edwards
timate of the plateau onset time should be reasonably ap
cable here. The plateau onset time is readily shown to exh
the following scaling. When excluded volume effects are i
portant it is expected that in the excluded volume casete

;fG0
21;G0

20.57 ~good solvent! and in the mean-field cas
te;G0

21/3 ~theta solution!. As these two estimates bound th
observed scaling, it is apparent that the Doi-Edwards t
model can account for the observed early time scaling
that the Maxwell fluid plateau onset time prediction w
purely fortuitous.

IV. CONCLUSIONS

A simple model of Brownian motion in a singl
relaxation-time Maxwell fluid was developed and compar
to diffusing wave spectroscopy measurements of colloi
motion in CTAB/KBr wormlike micelle solutions. The ex
perimentally measured Brownian motion was observed
conform to the model predictions at long times and there
provided an additional confirmation of the essentially Ma
wellian mechanical behavior of wormlike micelle solution
at low frequencies. In addition, the plateau moduli and t
minal times determined from the Brownian motion measu
ments were of the same order of magnitude as those fo
by other investigators via conventional mechanical rheo
etry. Surprisingly in light of its neglect of short-time dynam
cal processes, the Maxwell model predicted a plateau o
time with which the measured mean-square displacem

l
ng

FIG. 5. Probe diffusion rescaled with respect to the plateau
set time predicted for a single relaxation-time Maxwell fluid.t
;AttB, and the plateau mean-square displacement. Symbols
the same as in Fig. 3.
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5394 PRE 62JOHN H. van ZANTEN AND KARL P. RUFENER
could be reduced to a master curve. However, the predic
grossly underestimated the actual plateau onset time.
predicted rescaling was shown to be essentially that also
dicted by the Doi-Edwards tube model for polymer solutio
under good solvent conditions where a more proper acco
ing of the short-time dynamics was made. This indicated t
the success of the predicted Maxwell model plateau on
time scaling was purely fortuitous.

APPENDIX A

An alternate approach to solving the generalized Lan
vin equation for arbitrary memory function has been utiliz
by Mason and co-workers@1–3#. The exact relationship be
tween a particle’s mean-square displacement and the
pending medium’s memory function in the frequency d
main is

z̃~s!5
6kT

s2^D r̃ 2~s!&
2ms ~A1a!

or, neglecting the inertial term,

z̃~s!>
6kT

s2^D r̃ 2~s!&
, ~A1b!

where f̃ (s)5*0
`e2stf (t)dt denotes a Laplace transforme

quantity. Utilizing our single relaxation-time Maxwell fluid
memory function, z(t)5(z/t)e2t/t with z56phR, the
mean-square displacement in the frequency domain~neglect-
ing inertia! is

^D r̃ 2~s!&>
6kT

z S 1

s2 1
t

sD . ~A2!

Following the Laplace inversion the mean-square displa
ment in the time domain is found to be

^Dr 2~ t !&>
6kT

z
~ t1t!. ~A3!

This is the same result found in the long-time limit of o
more rigorous calculation wherein the inertial terms we
retained. However, it should be noted that the mean-sq
displacement plateau is underestimated by a factor of 2
shown earlier.

An even more interesting result arises from a further
proximation of Mason and co-workers wherein they attem
to establish the connection between a Brownian partic
mean-squared displacement and the suspending medi
shear modulus@1–3#. Here they have assumed that t
Stokes-Einstein relationship is valid at all frequencies~i.e., a
frequency-dependent viscosity, no-slip boundary conditio
the sphere surface, incompressible medium! such that

z̃~s!56ph̃~s!R. ~A4!

Recall that this relation is exact for a purely viscous flu
with no slip boundary conditions. The suspending medium
shear modulusG(t), can be expressed in the Laplace dom
as
n
he
e-

s
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at
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e-

s-
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e-

e
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-
t
’s
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G̃~s!5sh̃~s!5
sz̃~s!

6pR
5

kT

spR^D r̃ 2~s!&
. ~A5!

Utilizing the expression for a single relaxation-time Maxwe
fluid’s memory function or, better yet, the inertialess mea
square displacement of a Brownian particle undergoing th
mal motion within a single relaxation-time Maxwell fluid
the single relaxation-time Maxwell fluid’s shear modulus
the frequency domain within the Mason-Weitz approxim
tion is given by

G̃~s!5h
s

st11
. ~A6!

The complex shear modulus,G* (v) ~the form familiar from
the theory of linear viscoelasticity!, can be found using ana
lytic continuation, substitutingiv for s and then taking the
real and imaginary parts to yield the storage and loss mod
G8(v) andG9(v), respectively:

G* ~v!5h
iv

ivt11
~A7!

with

G8~v!5
hv2t

v2t211
~A8a!

and

G9~v!5
hv

v2t211
. ~A8b!

These are the exact expressions for the viscoelastic modu
a single relaxation-time Maxwell fluid@31#, thereby demon-
strating the success of the Mason-Weitz approximation fo
least the simple, incompressible, viscoelastic continu
model outlined here.

APPENDIX B

The single relaxation-time Maxwell fluid provides som
insight into the validity of ignoring inertial effects in th
Langevin representation of Brownian motion in viscoelas
media. In order for this condition to be met, the followin
inequality must be satisfied within the approximation of M
son and Weitz:

ms! z̃~s!. ~B1!

For the case of a single relaxation-time Maxwell fluid th
inequality becomes

s~st11!!
z

m
5tB

215
9h

2R2rP
, ~B2!

whererP is the particle density. For the terminal relaxatio
times typical of viscoelastic materials,st@1 will hold near
the limiting frequency. Inertial effects become importa
when the following inequality is no longer satisfied:
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s!~ttB!21/25A 9h

2R2rPt
5A 9G0

2R2rP
. ~B3!

This is exactly the plateau onset frequency predicted by
single relaxation-time Maxwell model mean-square displa
ment as expected. Interestingly, the mean-square disp
ment oscillations predicted by the single relaxation-tim
Maxwell fluid model begin at this time and persist until th
terminal relaxation time is reached. Therefore in the sin
relaxation-time Maxwell fluid case, when inertial effects a
assumed negligible, as in the Mason-Weitz approximat
not only is the ballistic regime neglected as expected,
other components of the dynamical behavior are also el
nated. This phenomenon is also manifested in the pla
mean-square displacement difference predicted by the e
calculation and the Mason-Weitz approximation.

Polymer solutions and melts exhibit much more comp
stress relaxation behavior than a single relaxation-time M
well fluid @23#. The short-time stress relaxation modul
found from the Doi-Edwards tube model is

Gr~ t !5Gt<teS te

t D a

~B4!

whent<te . HereGr(t) is the stress relaxation modulus an
te denotes the time at which tube constraints become im
tant. The values ofGt<te

anda depend on the nature of th
polymer chains~i.e., flexible, semiflexible, or stiff!. In the
classic Doi-Edwards model for flexible chains in the m
Gt<te

5G0 is the plateau modulus anda is 1/2. In order to
neglect inertia within the Mason-Weitz approximation t
following inequality must be satisfied:

ms! z̃~s!56pRG̃r~s!. ~B5!

It is a straightforward calculation to show that inertial effec
can be neglected only for frequencies satisfying the follo
ing inequality:
A

S

C

idt
e
-
e-

e
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ut
i-
au
ct

x
x-

r-

t

-

s!S 9Gt<te
te

aG~22a!

2~12a!R2rP
D 1/~22a!

, ~B6!

where G(x) denotes the gamma function. This leads to
somewhat less restrictive~i.e., higher! frequency limit than
the single relaxation-time Maxwell fluid model. That is, th
high-frequency Rouse modes provide a means for visc
dissipation at short-time scales and thereby reduce the d
tion of ballistic motion exhibited by a Brownian particle.
this critical frequency is much larger than 1/te , then the
mean-square displacement whent<te is simply given by

^Dr 2~ t !&>
kT~12a!

pRGt<te
te

aG~11a!G~22a!
ta. ~B7!

Here we have neglected the small mean-square displace
offset resulting from the initially ballistic motion. The ne
glected mean-square displacement offset would be of or

^Dr 2&offset'9~42a!/~22a!
kT

4p

3S 2~12a!rP

9Gt<te
te

aG~22a!D 1/~22a!

R~3a22!/~22a!.

~B8!
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